Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Environ Pollut ; 349: 123957, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631446

RESUMO

Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.

2.
Neurochem Res ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551796

RESUMO

Currently, there are no effective therapies to cure Parkinson's disease (PD), which is the second most common neurodegenerative disease primarily characterized by motor dysfunction and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Protopanaxadiols (PPDs), including 20 (R)- protopanaxadiol (R-PPD) and 20 (S)- protopanaxadiol (S-PPD), are main metabolites of ginsenosides. The role of ginsenosides in neurodegenerative diseases has been thoroughly studied, however, it is unknown whether PPDs can attenuate behavioral deficits and dopaminergic neuron injury in PD model mice to date. Here, we administered PPDs to MPTP-induced PD model mice and monitored the effects on behavior and dopaminergic neurons to investigate the effects of R-PPD and S-PPD against PD. Our results showed that R-PPD and S-PPD (at a dose of 20 mg/kg, i.g.) treatment alleviated MPTP (30 mg/kg, i.p.) induced behavioral deficits. Besides, R-PPD and S-PPD protected MPP+-induced neuron injury and mitochondrial dysfunction, and reduced the abnormal expression of Cyt C, Bax, caspase-3 and Bcl-2. These findings demonstrate that R-PPD and S-PPD were potentially useful to ameliorate PD.

3.
J Am Chem Soc ; 146(13): 9434-9443, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507716

RESUMO

Electrocatalytic synthesis of hydrogen peroxide (H2O2) in acidic media is an efficient and eco-friendly approach to produce inherently stable H2O2, but limited by the lack of selective and stable catalysts under industrial-relevant current densities. Herein, we report a diatomic cobalt catalyst for two-electron oxygen reduction to efficiently produce H2O2 at 50-400 mA cm-2 in acid. Electrode kinetics study shows a >95% selectivity for two-electron oxygen reduction on the diatomic cobalt sites. In a flow cell device, a record-high production rate of 11.72 mol gcat-1 h-1 and exceptional long-term stability (100 h) are realized under high current densities. In situ spectroscopic studies and theoretical calculations reveal that introducing a second metal into the coordination sphere of the cobalt site can optimize the binding strength of key H2O2 intermediates due to the downshifted d-band center of cobalt. We also demonstrate the feasibility of processing municipal plastic wastes through decentralized H2O2 production.

4.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474198

RESUMO

Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/ß-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues.


Assuntos
Periodontite , Proantocianidinas , Humanos , Ratos , Animais , Osteogênese/fisiologia , Ligamento Periodontal , Lipopolissacarídeos/metabolismo , Lisina/metabolismo , Proantocianidinas/metabolismo , Epigênese Genética , Células-Tronco/metabolismo , Periodontite/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
5.
Sleep Med ; 116: 129-137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460418

RESUMO

IMPORTANCE: Pediatric obstructive sleep apnea (OSA) is a common disease that can have significant negative impacts on a child's health and development. A comprehensive evaluation of different pharmacologic interventions for the treatment of OSA in children is still lacking. OBJECTIVE: This study aims to conduct a comprehensive systematic review and network meta-analysis of pharmacological interventions for the management of obstructive sleep apnea in pediatric population. DATA SOURCES: PubMed, Web of Science, Embase, The Cochrane Library, and CNKI were searched from 1950 to November 2022 for pediatric OSA. STUDY SELECTION: Multiple reviewers included Randomized controlled trials (RCTs) concerning drugs on OSA in children. DATA EXTRACTION AND SYNTHESIS: Multiple observers followed the guidance of the PRISMA NMA statement for data extraction and evaluation. Bayesian network meta-analyses(fixed-effect model) were performed to compare the weighted mean difference (WMD), logarithmic odds ratios (log OR), and the surface under the cumulative ranking curves (SUCRA) of the included pharmacological interventions. Our protocol was registered in PROSPERO website (CRD42022377839). MAIN OUTCOME(S) AND MEASURE(S): The primary outcomes were improvements in the apnea/hypopnea index (AHI), while secondary outcomes included adverse events and the lowest arterial oxygen saturation (SaO2). RESULTS: 17 RCTs with a total of 1367 children with OSA aged 2-14 years that met the inclusion criteria were eventually included in our systematic review and network meta-analysis. Ten drugs were finally included in the study. The results revealed that Mometasone + Montelukast (WMD-4.74[95%CrIs -7.50 to -2.11], Budesonide (-3.45[-6.86 to -0.15], and Montelukast(-3.41[-5.45 to -1.39] exhibited significantly superior therapeutic effects compared to the placebo concerning apnea hypopnea index (AHI) value with 95%CrIs excluding no effect. Moreover, Mometasone + Montelukast achieved exceptionally high SUCRA values for both AHI (85.0 %) and SaO2 (91.0 %). CONCLUSIONS AND RELEVANCE: The combination of mometasone furoate nasal spray and oral montelukast sodium exhibits the highest probability of being the most effective intervention. Further research is needed to investigate the long-term efficacy and safety profiles of these interventions in pediatric patients with OSA.


Assuntos
Acetatos , Ciclopropanos , Quinolinas , Apneia Obstrutiva do Sono , Sulfetos , Criança , Humanos , Metanálise em Rede , Acetatos/uso terapêutico , Apneia Obstrutiva do Sono/tratamento farmacológico , Furoato de Mometasona/uso terapêutico
6.
J Health Popul Nutr ; 43(1): 38, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449003

RESUMO

BACKGROUND: There have been studies on the relationship between hepatitis B virus (HBV) infection and diet. We hypothesized HBV infection is related to dietary calcium intake, but the evidence is limited. This study aimed to examine whether dietary calcium intake is independently related to HBV infection in the United States population. METHODS: A total of 20,488 participants aged over 20 years from the National Health and Nutrition Examination Survey (NHANES), conducted from 2007 to 2020, were included in this study. Pearson correlation was used to test the association between dietary calcium and serum calcium. The relationships of HBV infection with dietary calcium and serum calcium were assessed by logistic regression models. RESULTS: There was a weak correlation between dietary calcium and serum calcium (r = 0.048). Logistic regression models indicated that HBV infection had a linear negative correlation with dietary calcium (OR 0.37; 95%CI 0.19, 0.76). For each additional 10 mg dietary calcium, the possibility of HBV infection was reduced by 63%. Hepatitis B positive participants had lower serum calcium content than negative participants. Stratified analysis shown the linear relationship between calcium and HBV infection varied among sex, race/ethnicity, and body mass index. CONCLUSION: Our findings demonstrated HBV infection was linearly and inversely correlated with dietary calcium. The current study is expected to offer a fresh perspective on reducing HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Adulto , Cálcio da Dieta , Inquéritos Nutricionais , Cálcio , Hepatite B/epidemiologia
7.
Int J Public Health ; 69: 1606680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544927

RESUMO

Objectives: This study aimed to estimate the life expectancy (LE) and health-adjusted life expectancy (HALE) of type 2 diabetes mellitus (T2DM) among the rural elderly population. Methods: A total of 10,318 participants aged 65 to 79 were derived from the Henan Rural Cohort. The LE and HALE were calculated via the Sullivan method and multistate life table. Results: Among 10,318 subjects, 1,325 suffered from T2DM at the baseline, and 394 participants had newly-developed T2DM. The results from the Sullivan method showed that the LE, HALE, and HALE/LE were 17.98, 16.18 years, and 89.95% for men aged 65 to 69, and the corresponding estimates for women were 21.81, 18.73 years, and 85.86%, respectively. The LE, HALE and HALE/LE calculated via multistate life table were 19.86, 17.53 years, and 88.29% for men at aged 65, and the corresponding values for women were 25.01, 20.87 years, and 83.44%, respectively. Conclusion: Rural elderly women have a longer LE and HALE of T2DM, but they have lower quality of life than men. More attention should be paid to T2DM among rural elderly people, especially in women. Clinical Trial Registration: The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Idoso , Feminino , Diabetes Mellitus Tipo 2/epidemiologia , Qualidade de Vida , Estudos de Coortes , Expectativa de Vida , População Rural , China/epidemiologia
8.
Angew Chem Int Ed Engl ; 63(12): e202319815, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38299255

RESUMO

Piezochromic materials that exhibit pressure-dependent luminescence variations are attracting interest with wide potential applications in mechanical sensors, anticounterfeiting and storage devices. Crystalline porous materials (CPMs) have been widely studied in piezochromism for highly tunable luminescence. Nevertheless, reversible and high-contrast emission response with a wide pressure range is still challenging. Herein, the first example of hierarchical porous cage-based πOF (Cage-πOF-1) with spring structure was synthesized by using aromatic chiral cages as building blocks. Its elastic properties evaluated based on the bulk modulus (9.5 GPa) is softer than most reported CPMs and the collapse point (20.0 GPa) significantly exceeds ever reported CPMs. As smart materials, Cage-πOF-1 displays linear pressure-dependent emission and achieves a high-contrast emission difference up to 154 nm. Pressure-responsive limit is up to 16 GPa, outperforming the CPMs reported so far. Dedicated experiments and density functional theory (DFT) calculations illustrate that π-π interactions-dominated controllable structural shrinkage and porous-spring-structure-mediated elasticity is responsible for the outstanding piezofluorochromism.

9.
J Gene Med ; 26(2): e3669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380717

RESUMO

BACKGROUND: This study investigated the role of the ferroptosis-related gene FTH1 in oral squamous cell carcinoma (OSCC) and evaluated the therapeutic potential of baicalin in OSCC cell treatment. METHODS: A prognostic model was established by bioinformatic analysis, consisting of 12 ferroptosis related genes (FRGs), and FTH1 was selected as the most significantly up-regulated FRGs. The clinical correlation of FTH1 in OSCC samples was evaluated by both immunohistochemical and bioinformatic characterizations. The effects of FTH1 on migration, invasion, epithelial-mesenchymal transition (EMT) and proliferation were determined by wound healing assays, transwell assays, western blotting and 5'-ethynl 2'-deoxyuridine proliferation assays, respectively. The effects of FTH1 on ferroptosis were tested via ferroptosis markers and Mito Tracker staining. In addition, the therapeutic effects of baicalin on OSCC cells were confirmed using EMT, migration, invasion, proliferation and ferroptosis assays. RESULTS: The 12 FRGs were predictive of the prognosis for OSCC patients, and FTH1 expression was identified as significantly up-regulated in OSCC samples, which was highly associated with survival, immune cell infiltration and drug sensitivity. Moreover, knocking down FTH1 inhibited cell proliferation, EMT and invasive phenotypes, but induced ferroptosis in OSCC cells (Cal27 and SCC25). Furthermore, baicalin directly suppressed expression of FTH1 in OSCC cells, and effectively promoted ferroptosis and inhibited the proliferation as well as EMT by directly targeting FTH1. CONCLUSIONS: This study has demonstrated that FTH1 is a therapeutic target for OSCC treatment, and has provided evidence that baicalin offers a promising alternative for OSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Ferroptose , Flavonoides , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ferroptose/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular , Ferritinas , Oxirredutases
10.
J Inflamm Res ; 17: 1057-1082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375021

RESUMO

As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.

11.
RSC Adv ; 14(3): 1527-1537, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179095

RESUMO

Periodontitis can lead to defects in the alveolar bone, thus increasing the demand for dependable biomaterials to repair these defects. This study aims to examine the pro-osteogenic and anti-bacterial properties of UPPE/ß-TCP/TTC composites (composed of unsaturated polyphosphoester [UPPE], ß-tricalcium phosphate [ß-TCP], and tetracycline [TTC]) under an inflammatory condition. The morphology of MC3T3-E1 cells on the composite was examined using scanning electron microscopy. The toxicity of the composite to MC3T3-E1 cells was assessed using the Alamar-blue assay. The pro-osteogenic potential of the composite was assessed through ALP staining, ARS staining, RT-PCR, and WB. The antimicrobial properties of the composite were assessed using the zone inhibition assay. The results suggest that: (1) MC3T3-E1 cells exhibited stable adhesion to the surfaces of all four composite groups; (2) the UPPE/ß-TCP/TTC composite demonstrated significantly lower toxicity to MC3T3-E1 cells; and (3) the UPPE/ß-TCP/TTC composite had the most pronounced pro-osteogenic effect on MC3T3-E1 cells by activating the WNT/ß-catenin pathway and displaying superior antibacterial properties. UPPE/ß-TCP/TTC, as a biocomposite, has been shown to possess antibacterial properties and exhibit excellent potential in facilitating osteogenic differentiation of MC3T3-E1 cells.

12.
13.
Neural Regen Res ; 19(5): 1133-1141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862219

RESUMO

Bromodomain and plant homeodomain (PHD) finger containing protein 1 (Brpf1) is an activator and scaffold protein of a multiunit complex that includes other components involving lysine acetyltransferase (KAT) 6A/6B/7. Brpf1, KAT6A, and KAT6B mutations were identified as the causal genes of neurodevelopmental disorders leading to intellectual disability. Our previous work revealed strong and specific expression of Brpf1 in both the postnatal and adult forebrain, especially the hippocampus, which has essential roles in learning and memory. Here, we hypothesized that Brpf1 plays critical roles in the function of forebrain excitatory neurons, and that its deficiency leads to learning and memory deficits. To test this, we knocked out Brpf1 in forebrain excitatory neurons using CaMKIIa-Cre. We found that Brpf1 deficiency reduced the frequency of miniature excitatory postsynaptic currents and downregulated the expression of genes Pcdhgb1, Slc16a7, Robo3, and Rho, which are related to neural development, synapse function, and memory, thereby damaging spatial and fear memory in mice. These findings help explain the mechanisms of intellectual impairment in patients with BRPF1 mutation.

14.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960360

RESUMO

LiDAR point clouds are significantly impacted by snow in driving scenarios, introducing scattered noise points and phantom objects, thereby compromising the perception capabilities of autonomous driving systems. Current effective methods for removing snow from point clouds largely rely on outlier filters, which mechanically eliminate isolated points. This research proposes a novel translation model for LiDAR point clouds, the 'L-DIG' (LiDAR depth images GAN), built upon refined generative adversarial networks (GANs). This model not only has the capacity to reduce snow noise from point clouds, but it also can artificially synthesize snow points onto clear data. The model is trained using depth image representations of point clouds derived from unpaired datasets, complemented by customized loss functions for depth images to ensure scale and structure consistencies. To amplify the efficacy of snow capture, particularly in the region surrounding the ego vehicle, we have developed a pixel-attention discriminator that operates without downsampling convolutional layers. Concurrently, the other discriminator equipped with two-step downsampling convolutional layers has been engineered to effectively handle snow clusters. This dual-discriminator approach ensures robust and comprehensive performance in tackling diverse snow conditions. The proposed model displays a superior ability to capture snow and object features within LiDAR point clouds. A 3D clustering algorithm is employed to adaptively evaluate different levels of snow conditions, including scattered snowfall and snow swirls. Experimental findings demonstrate an evident de-snowing effect, and the ability to synthesize snow effects.

15.
Nat Commun ; 14(1): 7312, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951992

RESUMO

Enveloped viruses encased within a lipid bilayer membrane are highly contagious and can cause many infectious diseases like influenza and COVID-19, thus calling for effective prevention and inactivation strategies. Here, we develop a diatomic iron nanozyme with lipoxidase-like (LOX-like) activity for the inactivation of enveloped virus. The diatomic iron sites can destruct the viral envelope via lipid peroxidation, thus displaying non-specific virucidal property. In contrast, natural LOX exhibits low antiviral performance, manifesting the advantage of nanozyme over the natural enzyme. Theoretical studies suggest that the Fe-O-Fe motif can match well the energy levels of Fe2 minority ß-spin d orbitals and pentadiene moiety π* orbitals, and thus significantly lower the activation barrier of cis,cis-1,4-pentadiene moiety in the vesicle membrane. We showcase that the diatomic iron nanozyme can be incorporated into air purifier to disinfect airborne flu virus. The present strategy promises a future application in comprehensive biosecurity control.


Assuntos
Alcadienos , Influenza Humana , Vírus , Humanos , Antivirais , Lipoxigenase , Ferro
16.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896492

RESUMO

In the field of intelligent vehicle technology, there is a high dependence on images captured under challenging conditions to develop robust perception algorithms. However, acquiring these images can be both time-consuming and dangerous. To address this issue, unpaired image-to-image translation models offer a solution by synthesizing samples of the desired domain, thus eliminating the reliance on ground truth supervision. However, the current methods predominantly focus on single projections rather than multiple solutions, not to mention controlling the direction of generation, which creates a scope for enhancement. In this study, we propose a generative adversarial network (GAN)-based model, which incorporates both a style encoder and a content encoder, specifically designed to extract relevant information from an image. Further, we employ a decoder to reconstruct an image using these encoded features, while ensuring that the generated output remains within a permissible range by applying a self-regression module to constrain the style latent space. By modifying the hyperparameters, we can generate controllable outputs with specific style codes. We evaluate the performance of our model by generating snow scenes on the Cityscapes and the EuroCity Persons datasets. The results reveal the effectiveness of our proposed methodology, thereby reinforcing the benefits of our approach in the ongoing evolution of intelligent vehicle technology.

17.
Nanomicro Lett ; 15(1): 219, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804457

RESUMO

In recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation. To solve these problems, herein, we introduce abundant oxygen vacancies into the flower-like δ-MnO2 nanostructure and effectively modulate the vacancy defects to reach the optimal level (δ-MnO2-x-2.0). The smart design intrinsically tunes the electronic structure, guarantees ion chemisorption-desorption equilibrium and increases the electroactive sites, which not only effectively accelerates charge transfer rate during reaction processes, but also endows more redox reactions, as verified by first-principle calculations. These merits can help the fabricated δ-MnO2-x-2.0 cathode to present a large specific capacity of 551.8 mAh g-1 at 0.5 A g-1, high-rate capability of 262.2 mAh g-1 at 10 A g-1 and an excellent cycle lifespan (83% of capacity retention after 1500 cycles), which is far superior to those of the other metal compound cathodes. In addition, the charge/discharge mechanism of the δ-MnO2-x-2.0 cathode has also been elaborated through ex situ techniques. This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.

18.
Sci Total Environ ; 905: 167016, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714338

RESUMO

Moderate altitude exposure has shown beneficial effects on diabetes incidence but the underlying mechanisms are not understood. Our study aimed to investigate how the human gut microbiome impacted the serum metabolome and associated with glucose homeostasis in healthy Chinese individuals upon moderate-altitude exposure. Faecal microbiome composition was assessed using shotgun metagenomic sequencing. Serum metabolome was acquired by untargeted metabolomics technology, and amino acids (AAs) and propionic acid in serum were quantified by targeted metabolomics technology. The results indicated that the moderate-altitude exposed individuals presented lowered fasting blood glucose (FBG) and propionic acid, increased circulating L-Glutamine but decreased L-Glutamate and L-Valine, which correlated with enriched Bacteroidetes and decreased Proteobacteria. Additionally, the silico causality associations among gut microbiota, serum metabolome and host FBG were analyzed by mediation analysis. It showed that increased Bacteroides ovatus (B. ovatus) and decreased Escherichia coli (E. coli) were identified as the main antagonistic species driving the association between L-Glutamate and FBG in silico causality. Furthermore, the high-fat diet (HFD) fed mice subjected to faecal microbiota transplantation (FMT) were applied to validate the cause-in-fact effects of gut microbiota on the beneficial glucose response. We found that microbiome in the moderate-altitude exposed donor could predict the extent of the FBG response in recipient mice, which showed lowered FBG, L-Glutamate and Firmicutes/Bacteroidetes ratio. Our findings suggest that moderate-altitude exposure targeting gut microbiota and circulating metabolome, may pave novel avenues to counter dysglycemia.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Glicemia , Propionatos , Ácido Glutâmico , Altitude , Escherichia coli , Metaboloma , Glucose , Jejum
19.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686118

RESUMO

Oral squamous cell carcinoma (OSCC) is a prevalent form of malignant tumor, characterized by a persistently high incidence and mortality rate. The extracellular matrix (ECM) plays a crucial role in the initiation, progression, and diverse biological behaviors of OSCC, facilitated by mechanisms such as providing structural support, promoting cell migration and invasion, regulating cell morphology, and modulating signal transduction. This study investigated the involvement of ECM-related genes, particularly THBS1, in the prognosis and cellular behavior of OSCC. The analysis of ECM-related gene data from OSCC samples identified 165 differentially expressed genes forming two clusters with distinct prognostic outcomes. Seventeen ECM-related genes showed a significant correlation with survival. Experimental methods were employed to demonstrate the impact of THBS1 on proliferation, migration, invasion, and ECM degradation in OSCC cells. A risk-prediction model utilizing four differentially prognostic genes demonstrated significant predictive value in overall survival. THBS1 exhibited enrichment of the PI3K/AKT pathway, indicating its potential role in modulating OSCC. In conclusion, this study observed and verified that ECM-related genes, particularly THBS1, have the potential to influence the prognosis, biological behavior, and immunotherapy of OSCC. These findings hold significant implications for enhancing survival outcomes and providing guidance for precise treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Colágeno , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Trombospondina 1/metabolismo
20.
Nano Lett ; 23(17): 8115-8125, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643406

RESUMO

Tumor-derived extracellular vesicles (EVs) are promising to monitor early stage cancer. Unfortunately, isolating and analyzing EVs from a patient's liquid biopsy are challenging. For this, we devised an EV membrane proteins detection system (EV-MPDS) based on Förster resonance energy transfer (FRET) signals between aptamer quantum dots and AIEgen dye, which eliminated the EV extraction and purification to conveniently diagnose lung cancer. In a cohort of 80 clinical samples, this system showed enhanced accuracy (100% versus 65%) and sensitivity (100% versus 55%) in cancer diagnosis as compared to the ELISA detection method. Improved accuracy of early screening (from 96.4% to 100%) was achieved by comprehensively profiling five biomarkers using a machine learning analysis system. FRET-based tumor EV-MPDS is thus an isolation-free, low-volume (1 µL), and highly accurate approach, providing the potential to aid lung cancer diagnosis and early screening.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Transferência Ressonante de Energia de Fluorescência , Neoplasias Pulmonares/diagnóstico , Ensaio de Imunoadsorção Enzimática , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...